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Background on the MIS problem 

Several textbooks on distributed computing provide a detailed discussion of the MIS 

problem, its history, importance and applications. See for example [1,2].  Maximal 

independent set (MIS) is a symmetry breaking problem extensively used in practice. For 

networks in which not all processes are directly connected to each other, MIS seeks to 

elect several local leaders which, together, cover the entire set of nodes in the network. 

The MIS solution is key for obtaining an initial structure and organization for 

sensor/radio networks.  MIS is used to compute spanning trees in networks reducing 

communication costs. In addition, once a MIS is selected each node can select one of the 

MIS nodes adjacent to it leading to a clustering of the nodes which can then be used for 

routing and for solving  other problems in wireless networks [3].  

 

Back in 1982 Valiant mentioned MIS as a challenging problem for parallel and 

distributed computing stating that “it is difficult to see how this problem can be solved in 

substantially fewer stages such as O( n ) or O(log n)” where n is the number of nodes in 

the network [4]. As in the problem of electing a leader the problem of deterministically 

constructing a MIS is impossible in totally symmetric networks.  Therefore, many 

probabilistic MIS algorithms were developed. Karp and Wigderson [5] presented a 

O(log
3
 n) algorithm for parallel computers.  This algorithm was later improved by Luby, 

and by Alon, Babai and Itai, who reduced the time to O(log n) [6,7].  

 

The importance of algorithms that do not rely on knowledge of the number of neighbors 

and are only using limited communication is demonstrated by the following scenario: 

Assume we are dropping from an airplane thousands of monitoring devices for air quality 

control at some location and they need to communicate. These devices are expected to be 

operate for a long time and so need to conserve energy. They are also restricted   in terms 

of their broadcast ability and can only send messages to other sensors that are at a close 

enough range. In this case we have thousands of nodes and the network is determined by 

the distance between pairs of nodes and the geographical topology (a distance below a 

cutoff implies an edge between them). However, since they were all dropped from an 

airplane they do not know how many neighbors they have and they cannot count as well 

(in radio networks, if two processes broadcast at the same time none of them gets the 

message so if everybody tries to broadcast to count neighbors nobody would get any 

message).  

For such a case MIS is a useful procedure for obtaining an initial network structure and a 

set of local leaders that can communicate with all other processes to relay instructions 

and coordinate monitoring efforts. See [8] for additional discussion about the importance 

of these assumptions in practice. 

 

The relationship between MIS and SOP selection 

As discussed in the main text we see strong similarities and some notable differences 

between the MIS selection problem and SOP selection during peripheral nervous system 

development in flies. MIS attempts to select a subset of the nodes A such that: 

1. All nodes are either in A or connected to a node in A. 

2. No two nodes in A are connected. 
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These requirements allow other applications, that are based on the existence of MIS, to 

guarantee correct functioning of network operations [1,2]. These functions include 

routing where messages are sent via the MIS members, generating a spanning tree for the 

network and clustering of nodes in the network. 

In SOP selection all cells either become SOPs or are physically inhibited by a SOP cell 

(and so are physically interacting with a SOP cell), similar to point 1 above. In addition, 

SOPs are required to be spaced such that no two SOP’s are physically adjacent similar to 

point 2. Here the requirements stem from the fact that each SOP will eventually develop 

to a sensory organ, with an external bristle as the sensor. Inaccurate spacing of these 

bristles may distort the fly sense of the environment leading to an evolutionary 

disadvantage.  Indeed, in our studies we found that for over 99% of SOPs the spacing 

requirement was maintained indicating a strong selective bias to maintain such spacing. 

 

In addition to the above two requirements, when designing our computational model and 

algorithm we attempted to follow other properties of the biological systems as listed 

below: 

1. Topology. It is unlikely that cells can distinguish neighboring cells that have been 

inhibited from neighboring cells that have not yet determined whether they 

become a SOP or not. This is especially true if most of the process involved in 

such a decision takes place within cells (cis mechanisms) as indicated by recent 

studies [9,10].  Thus, unlike previous computational methods [6,7], in our 

computational model we do not assume that nodes know the topology of the 

network and the subset of nodes that have exited the algorithm in each round.  

2. Stochasticity. As discussed in the main text and as was demonstrated by our 

experimental results SOP selection is likely a stochastic process. Our 

computational model relies on the results of coin flips which provide stochasticity 

to the MIS election solution.  

3. Communication. We assume a binary (1 bit) communication model. While the 

precise biological communication process is not completely resolved, several 

models that have been developed for this systems rely on a threshold decision and 

communication process which is effectively binary (yes / no depending on 

whether an internal threshold has been achieved) [10, 11,12].  

4. Synchronous model. We assumed a synchronous model where communication 

between nodes proceeds in rounds (or phases in our algorithm). It is clear that the 

biological system is asynchronous. However, certain aspects of the biological 

system resemble synchronous models and are not generally assumed in 

asynchronous computational systems. These synchronous like characteristics 

include: 1. Coordinated start time (wakeup): Cells start the SOP selection process 

based on an external biochemical signal that reaches all cells at roughly the same 

time. This is hard to achieve in a completely asynchronous computational system. 

2. Messages have a known delay: This is the major difference between 

synchronous and asynchronous computational models (the latter models do not 

assume a bound on message delay). In the biological system the messages involve 

a physical interaction using a biochemical process (Notch-Delta signaling). This 

process has a predictable delay which can be used to tune the internal selection 
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probabilities. Thus, the computational method we could derive from studying the 

biological system is only applicable to synchronous systems. 

 

The major difference between the computational and biological system is in the number 

of neighbors each cell / node can have (the initial degree). In computational models we 

usually do not want to restrict the degree (and so it could be as high as all nodes in the 

network) whereas in the biological system the degree is constrained by the physical 

interaction requirement which limits the number of neighbors to roughly 6 per cell. 

Fortunately, the rate change model that fits the biological process (see also below for 

more details) can be extended to accommodate larger number of neighbors as we discuss 

in the paper.  
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Supporting Methods  

 

 

Live imaging of SOPs selection in pupal discs 

Intact pupae of E(spl)mα-DsRed.T4-NLS [13] ; FRT80B-GFP-NLS (Bloomington) strain 

were collected at ~8-10 hours after puparium formation. Then, pupae were submerged in 

halocarbon oil and were subjected to time-lapsed fluorescent microscopy in 2 minutes 

intervals under a Zeiss LSM710 system. Confocal images were z-stacked in 5 m steps to 

make a vertical axis of ~m. Image analysis was performed with a Zeiss LSM image 

browser, depicting the maximal intensity pixel from a set of Z axis positions (Figure 2a 

and Supplementary movie).  

 

Live imaging data analysis 

We collected live imaging movies of ten distinct pupae. Each movie follows SOP 

selection of the notum microchaetes [14-16] from ~9-12 hours after puparium formation. 

This time window enables us to follow selection events within the fifth microcheate rows 

on the left and right sides of the future notum (corresponding to two distinct imaginal 

discs allowing us to follow two SOP selection clusters per movie). The shape of the fifth 

row pro-neural cluster is an elongated cluster with a characteristic size of 2 by 10 cells. 

Typically, four SOPs are selected from each of the fifth rows. In one of the movies we 

looked at we identified 5 SOPs on one of the sides. The four first SOPs selected from that 

movie were used for the analysis.  

 

A possible drawback of in-vivo imaging is that a live marker for the selected SOP cell is 

lacking. In fact, we identified the selected SOP as a non-repressed cell within the pro-

neural cluster. This indirect detection method is based on the reliability of the reporter 

[13, 17]. All the cells in the neuroectoderm layer were marked by a ubiquitous nuclear 

GFP expression, and Notch activity was detected by E(spl)mα-DsRed reporter 

expression. Thus, we identified a selected SOP as a green cell surrounding by cells 

expressing the DsRed reporter (Supp. figure 1). Notably, Notch reporter is activated only 

within the pro-neural cluster [17]. Thus, due to the fifth row narrow shape, the selected 

SOP is usually not entirely enclosed by reporter expressing cells.  

 

 
Supporting Figure 1: Time-lapse imaging of SOP selection in live pupa. Insets from main text figure 

2a. All cells are marks with GFP (green) and Notch activation is visualized by the mα-dsRed (red) 

reporter. SOP is identified by reporter up-regulation in adjacent cells.  

 



 6 

 Simulation studies 

 

Determining the SOP selection rate experimentally is complicated since the precise 

initiation time of the process is hard to define. Further, the observed selection times need 

to be transformed in order to derive the underlying selection rate. We have therefore 

employed in-silico modeling to identify the qualitative properties that could distinguish 

between selection rates that match our experimental observations and those that do not. In 

particular, we considered three limiting cases: a constant rate of selection (leading to a 

temporal decrease in the observed selections, as in Supporting Figure 2), a constant rate 

of observed selection (corresponding to temporally increasing selection rate, Supporting 

Figure 3) and normally-distributed selection times (corresponding to a low-noise process 

with a well-defined time of selection, Supporting Figure 4). Each of these cases can be 

associated with one or more possible stochastic cellular accumulation models as we 

discuss below.  

 

Selection time statistics 

As discussed in the paper we observed a stochastic behavior for the selection time of the 

SOPs selected second, third and fourth in each cluster. Let s2 be the selection time of the 

second SOP, s3 be the selection time for the third and s4 for the fourth (see Supporting 

Table 1, s2 corresponds to R2 and L2, s3 to R3 and L3 etc.). We first computed the 

average value of the differences between these selection times across all clusters by 

setting mean43 = mean(s4-s3) and mean32 = mean(s3-s2) where the average is over all 

20 clusters we analyzed. Next we set  . In our experiments we found that 

r=1.98. We then simulated the performance of four different possible models leading to 

stochastic selection of SOPs to determine whether the observed ratio r matches the 

differences that would be obtained from the distributions used in each of these models. 

These distributions are described in detail below. In all the descriptions below we follow 

a rounds (synchronous) model. In all simulations, when a cell decides to become a SOP, 

all of its neighbors exit the process in the same round. In this model errors occur when 

two neighboring cells decide to become SOPs in the same round. The models we 

considered are: 

 

Constant rate: Constant rate assumes a set of bursts of Delta production in each cell. If a 

specific burst exceeds the threshold the cell is selected as a SOP. Otherwise the Delta 

produced is degraded and the cell repeats this process. We simulate this using a threshold 

p for all cells. We assume that each cell draws a random number v ~ U(0,1) at each round 

(representing the burst value). If v >=  p the cells becomes a SOP. Otherwise, it 

continues to the next round.  

 

Rate change: This is based on the model described in the paper and later used in the MIS 

algorithm. We assume a burst model in which bursts of Delta production lead to enough 

Delta to pass the threshold in each cell. Bursts are stochastic events. Initially the 

probability that a burst occurs in each cell is p. This probability increases with time 

(reflecting, i.e. an increased activity of the proneural transcription factors Acheate and 

Scute). For these simulations we double the probability every O(log n) rounds as in the 

algorithm where n is the number of cells in the simulation. However, a similar result is 
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achieved if we continuously increase the rate rather than keeping it constant and than 

doubling it as long as the increase leads to doubling the rate every log n rounds.  

 

Accumulation: In this model we assume that each cell accumulates Delta (without 

degradation) until the amount passes a certain threshold t. Unlike the rate change model, 

however, the distribution is much more centered (a Poisson distribution  v~Pois(1)) and 

so larger thresholds are required to minimize errors. The amounts generated in each 

round are added to the total amount so far and when a cell reaches the threshold it 

becomes a SOP.  

 

Fixed accumulation: This model is similar to the accumulation model in the sense that 

cells accumulate Delta and become SOP when they pass a threshold t. However, unlike 

that model the decision of how many units to accumulate in each round is predetermined. 

Specifically, at the beginning of the process cells chose a value v~N(µ,2
) and they 

accumulate in each round v units of Delta (see below for details about the values of µ and 

2
). We truncate v setting it to 0 if v<0. This distribution may represent cases in which 

cells differ slightly at the beginning of the process (for example, some are larger than 

others etc.). 

 

Parameter estimation 

For the first three distributions we need to determine either the fixed or initial probability 

p or the threshold parameter t. We choose parameters for these three models such that the 

percentage of errors (two neighboring cells becoming SOPs in the same round) is roughly 

10%. The resulting parameters are presented in the legends of Supporting Figures 2-5. 

Reducing this percentage did not change the results reported in the paper but led to much 

longer simulation times since it required a large increase in the number of rounds 

performed by each cell. For the fourth model (fixed accumulation using a Gaussian) we 

need to set both t and the distribution parameters. However, we noted that when the 

variance is small compared to the mean the method behaves very similar to the constant 

rate method (regardless of the threshold used). Thus, we have set the standard deviation 

to be half the mean and varied t to achieve the 10% error rate mentioned above. 

Supporting Figures 2-5 provide a graphical view for each of the distributions for each of 

these stochastic models. These plots are based on 100000 simulation runs in which a 

single cell is run until it becomes a SOP (without taking into account neighbors, i.e. first 

passage time). 

 

Topology for the simulation 

For the full simulation we need to select 3 SOPs in each cluster. We have used a 7 by 2 

grid for this simulation (see Supporting Figure 6). All cells touching each other are 

neighbors including direct diagonal upper or lower cells (see Supporting Figure 6). We 

have used the time of selection (in terms of rounds) of the first three SOPs to compute the 

ratio for each distribution.  

 

Simulation time 

Each unit of simulation for each distribution involves 20 runs on the above grid (so that 

the results are comparable to the experimental results). Runs resulting in errors (two 
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neighboring cells selected in the same round) were discarded from further analysis. To 

determine the expected ratio and its standard deviation we repeated each unit run 1000 

times for each distribution. Thus, we performed 20000 runs for each model. The results 

of these simulations were used in Figure 3. 

 

Deriving a computational algorithm from based on the simulation results 

While both the rate change and fixed accumulation models agreed with our experimental 

observations, we have focused on the rate change model when deriving the algorithmic 

solution to the MIS problem. The reason we have focused on this model is that it is based 

on a similar idea as previous algorithms for MIS (for example, the algorithms of Luby [6] 

and Alon et al [7] that are mentioned in the paper) in which nodes change their 

probability during the execution of the algorithm. However, while in these algorithms the 

new probabilities depend on the changes in topology and require knowledge of  the 

degree in each round, in the biological solution no such assumption is used. We have thus 

asked whether the rate change process used in biology can be applied to the 

computational problem which led to the algorithm we presented. As for the fixed 

accumulation model, while this model works well in the fly system, it is heavily 

dependent on the fact that each cell is only connected to a small number of other cells. 

When looking for a solution to the computational problem we have tried to identify a 

solution that would generalize well to much larger networks. The rate change model 

indeed follows this requirement as discussed in the text while the fixed accumulation 

model does not and so we have not pursued this model further. 
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Supporting Figure 2: Distribution of first passage time for the round selected using the fixed rate 

distribution. The probability that was used for each coin flip in each round was 0.019. As discussed 

above this value leads to two neighbors selected in the same round in 10% of the runs. 
 

 
Supporting Figure 3. Distribution of first passage time for the round selected using the rate change 

distribution. The initial probability that was used for coin flips was 0.018. Interestingly, while the 

error rate for this distribution is the same as the fixed rate above, the median round selection time 

was much earlier (30 vs. 36) highlighting the advantages of rate change for the MIS problem as 

observed by prior computational methods. 
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Supporting Figure 4: Distribution of first passage time for the round selected using the accumulation 

distribution. The threshold was set for 45. The resulting distribution resembles a Gaussian as 

expected. 

 
Supporting Figure 5: Distribution of first passage time for the round selected using the fixed 

accumulation distribution. Note that it rises much more rapidly than the regular accumulation 

distribution which explains the difference in the ratios between the two. However, this distribution 

can also lead to very large selection times. Roughly 1% of the selections occur after 600 or more 

rounds (not shown, the results above are truncated at 600 for presentation issues) with some cases 

leading to selections after 10000 rounds.  
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Supporting Figure 6: Grid used for simulation and neighbor definition. The figure shows the 7 by 2 

grid used for simulation. The red node has joined A and all its neighbors (green circles) have exited 

the algorithm. All other nodes (black circles) continue to the next round until they or one of their 

neighbors join A. 
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Supporting Results 

 

SOP selection order 

We manually extract the estimated SOP selection times of twenty clusters, two clusters 

from each distinct pupae (Supp. table 1). The selected SOPs were mapped between the 

clusters based on their locations order within each cluster. We define the most posterior 

SOP as L1 (or R1) and the most anterior SOP as L4 (or R4). The allocation of specific 

selection time for each SOP was based on the earliest time step of Notch activity 

detection in one of its neighbors. Note that the absolute time values are dependent on the 

exact age of each pupa at the beginning of the live imaging follow up. Therefore, to 

assess the stochasticity of this selection process we first used the selection rank of the 

SOP within each cluster rather than the actual timing information. 

 

Supp. figure 7 presents the average ranks for each SOP position. Clearly, the selection of 

the first SOP is biased toward L1 (or R1). To formally evaluate the statistical significance 

of this bias, we compared the measured rank of the selected SOPs to a random SOP 

selection model. Random selection was simulated as follows. Each cell in a cluster of 

2X10 cells is assigned a selection time from a uniform distribution (the results are 

independent on the specific distribution shape). Then, cluster cells are marked as SOPs or 

non-SOPs. Iteratively, an un-marked cell with the earlier selection time is marked as an 

SOP and its nearest neighbor cells are marked as non-SOPs. When the status of all cells 

is determined, we extract the rank of SOP selection based on their order from top 

(anterior) to bottom (posterior).  

 

Our null hypothesis is that SOP selection is random and we tested whether the measured 

result can reject this hypothesis. To test this, we compared the average correlation of 

SOPs ranks between each pair in the 20 measured selection process to the corresponding 

average correlation of the simulation ranks (with similar 20 repeats in each of the 10,000 

simulations). P-value of the experimental ranks was obtained from the random model 

statistics. The measured result was below any incidence from the 10,000 simulation 

results (P-val <10
-4

), verifying that the posterior SOP tends to be selected first.  

 

As we can see from Supp figure 7, additional biases in the selection order of the 

remaining SOPs, if exist, are much less significant. Comparison of the L2-L4 (and R2-

R4) selection order to a random model (with a cluster of 2X7 cells) following the same 

procedure as described above yields a non significant P-value of 0.06. Moreover, 5 out of 

the 6 possible selection orders on 3 SOPs were detected in our limited measured samples. 

Thus, we conclude that stochasticity has a major role in SOP selection within the 

microchaetes fifth row proneural cluster.  

 

Next, we validated that there is no correlation in the selection order of the left and right 

clusters within the same pupa. We found that the average selection order correlation 

between L2-L4 and R2-R4 in the same pupa (~0.15) is below the average correlation 

between L2-L4 and R2-R4 of two distinct pupae (~0.22) again indicating a stochastic 

process. 
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Supporting Figure 7: Measured microchaetes SOP selection ranks. Average and standard deviation 

of SOP selection ranks. (A) L1-L4: left sides SOPs in a posterior to anterior order, and (B) R1-R4: 

right sides SOPs in a posterior to anterior order selection ranks.  

 

 

#Movie L1 L2 L3 L4 R1 R2 R3 R4 

1 90 150 100 125 85 85 145 150 

2 0 61 50 81 0 50 0 22 

3 0 44 28 60 0 16 38 0 

4 41 92 82 112 61 88 61 147 

5 48 0 48 68 12 0 28 78 

6 82 84 88 110 72 104 90 98 

7 0 21 107 4 0 49 77 129 

8 2 146 47 13 30 49 127 49 

9 34 57 34 92 ND 71 34 55 

10 0 2 33 63 0 33 33 44 

Supporting Table 1: Measured microchaetes SOP selection times. L1-L4 and R1-R4 are left and right 

sides SOPs in a posterior to anterior order. SOPs with a zero selection time were already detected in 

the first time step of the live imaging movie. ND stands for a not detected SOP.  

 

Supporting movies 

The two supporting movies depict, in each frame, the maximal intensity pixel from the 

set of Z axis positions that were tracked for each time point (“maximal intensity 

projection”). The movies provides a clock presenting the relative time of each frame (the 

experiment initiation time was set to zero for all movies) and a scale bar of 25µm. 

We have manually annotated the two supporting movies (Sample Movie 1 and Sample 

Movie 2 corresponding to pupa #7 and #5 in Supporting Table 1, respectively). These 

movies provide annotations displaying the approximate region of the fifth row pro-neural 

clusters (surrounded by white rectangle in the first few frames of each of these movies), 

arrows referring to selected SOPs within the regions of interest, and an annotation for 

pupa head eversion initiation time.  

In many cases the information in the maximal intensity projection movies was not 

accurate enough to determine the selection times of all SOPs since the neuroectoderm 

layer is placed with an incline (on the anterior-posterior axes) with respect to the 
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microscope focal plane, such that a stripe of the neuroectoderm layer with ~5 cells width 

is in focus at each z-section layer. In such cases the data of the neuroectoderm layer in the 

maximal intensity projection movies is interfered with irrelevant fluorescence signals 

coming from cells expressing GFP/DsRed reporter above and below the neuroectoderm 

layer, and from auto-fluorescence of the pupa cuticle. Thus, the relative SOP selections 

times that are listed in Supporting Table 1 were manually determined from the raw (Z 

stack) data according to the time step in which the level of DsRed reporter in the first 

neighbor of the selected SOP reaches a threshold.  
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Lemmas for the correctness of the algorithm 

 

Safety properties 

 

We first prove a few safety lemmas. These show that when the algorithm stops, no two 

neighboring nodes are in A (the final set produced by the algorithm) and that every node 

that has become inactive is a neighbor of a node in A.    

 

Lemma 1: No two nodes in A are connected to each other.  

Proof: Node w joins set A if it broadcast at an exchange of type 1 and none of its 

neighbors broadcasts at the same exchange. This means that none of its neighbors has 

joined A in a previous step since when a node joins A all its neighbors are marked 

inactive in the exchange in which it joins A.  Thus two neighboring nodes cannot join A 

at the same exchange, and when the earlier of them joins, the other one is marked inactive 

and will never join A. ■ 

 

Lemma 2: If node w exits the algorithm and it did not join A, then it is connected to a 

node in A.  

Proof: This can only happen if node w executes the "then'' part in Line 12 of the code.  

This occurs only upon receiving a message from a neighboring node that has just joined 

A. ■ 

 

Lemma 3: If w is in A then all the neighbors of w become inactive. 

Proof: By lemma 1 we know that none of w's neighbors is in A.  By the code (exchange 

2) when w joins A it broadcasts to all its neighbors that then become inactive and exit the 

algorithm (Line 12). ■ 

 

Run time proof 

 

We define the degree of a node to be the number of active neighbors this node has plus 1 

(that is, we assume that all nodes are connected to themselves).  Note that the degree may 

change during the execution of the algorithm as nodes exit the algorithm. We prove that 

by the time the algorithm ends all nodes have exited the algorithm with high probability. 

 

Lemma 4: With probability at least (1-



i

n 2
) there are no nodes with degree > 



D

2 i
 at the 

end of phase i.  

Proof: By induction on i. 

 

Base: for i=0 this is trivial (since D is an upper bound on the number of neighbors). 

 

Induction step: Assume correctness for i-1. Based on the induction hypothesis, with 

probability at least (1-



i 1

n2
) by the end of phase i-1 there are no nodes with more than 



2D

2 i
 active neighbors. If there are also no nodes with more than 



D

2 i
 neighbors we are 
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done. Otherwise, let v be a node with more than 



D

2 i
 neighbors. At each step in phase i (at 

least as long as it has more than 



D

2 i
 neighbors in that phase) there is a probability greater 

than (1-1/e)  that v or one of its neighbors broadcasts in line 6. To see this note that v and 

all its neighbors are flipping coins with probability  



1

2logD i
= 



1

(D /2i)
 and thus the probability that at least one of them would broadcast is: 

e
D

broadcastsvofneighbororvp
iD

i
/11)

2/

1
1(1)( 2/   

 

On the other hand, based on the induction hypothesis no node has more than 



2D

2 i
 

neighbors. Thus, the probability that a node that broadcasts a message does not collide  

 

 

with any other node is:  

 

 

 

 

 

Thus, in every step of phase i, node v has probability of at least 
42 2

11
)

1
1( 

ee
 to be 

removed.  Since there are  Mlog n steps in this phase with probability   nM log

4
)

2

1
1(1   

v would be removed in this phase. Setting M=34 leads to:  

3

ln3log1.2log34

4

log

4

1
1)

1
(1)

1
(1)

2

1
1(1)

2

1
1(1

nee

nnnnM   

Since there are at most n nodes with more than 



D

2 i
 neighbors, if the induction hypothesis 

holds then the probability that all nodes with this degree would be removed at the end of 

this phase is   
2

1
1

n
 . Combining this with the induction probability, the probability that 

there is no node with a degree greater than 



D

2 i
 at the end of round i is  

(1-



i 1

n2
)(1-



1

n 2
) 1-



i

n 2
. The last product is based on the chain rule which states that 

p(a,b) = p(a)p(b|a) and replacing a with the induction hypothesis and b with the event 

that there would not be a node with a degree greater than 



D

2 i
 at the end of round i. ■ 

 

Lemma 4 leads to the following theorem regarding the probability that by the end of the 

algorithm it has found a MIS:   

2

2/2

/1

)
2/

1
1()(

e
D

collisionsnop
iD

i




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Theorem 1: With probability 
22

log
1

log
1

n

n

n

D
 all nodes are either in A or connected 

to a node in A by the end of the algorithm. 

Proof: From lemma 4, with probability 



1
logD

n2
all nodes that are left in the algorithm at 

the end of phase log D have a degree of 1 (meaning that they are not connected to any 

other active node). These will all insert themselves into A. Since they are still active 

lemma 3 guarantees that they do not have any neighbors in A and so with this probability 

by the end of the algorithm all nodes are either in A or connected to a node in A. ■ 

 

Note that while we ended up with a probability of 



1
logD

n2
 for reaching a MIS when the 

algorithm terminates, we can obtain a probability of (1-ε) for arbitrary values of ε by 

changing the value of the parameter M. For example, doubling M would lead to an error 

probability at most 
5

log

n

D
for Theorem 1 instead of n

2  
in the current denominator. In 

general, a linear increase in M leads to an exponential decrease in the probability of an 

error.  

 

 

Message complexity 

 

In this section we show that the expected message complexity of our algorithm is linear 

in the number of nodes in the graph. Note that in the analysis we count a message only if 

it is sent from an active  node to an active node. As explained at the end of the section it 

is not difficult to see that if we charge for messages sent to inactive nodes as well, the 

expected number of messages can be quadratic. 

 

Let B denote the event that there are no nodes with degree > 



D

2 i
 at the end of phase i for 

all values of i.  The expected number of messages received in our algorithm, E(#M), can 

be written us:   

 

                                    E(#M) = P(B)*E(#M|B) + P(B)*E(#M|B)  

 

where E(#M|B) is the expected number of messages sent when B holds and  E(#M|B) is 

the expected number of messages sent when B does not hold.  

To derive the value of E(#M|B) note that the total number of messages that can be 

received during the execution of the algorithm is n
2
log

2
n (in each subphase a node can 

receive at most n messages, there are n nodes and at most log
2
n subphases). As we 

proved (Theorem 1), P(B) 
2

log

n

n
 . Thus:  
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P(B)*E(#M|B) ≤ nn
n

n 22

2
log

log
 = log

3
n ≤ 10n.  

We now derive the value of E(#M|B). First, note that for any two events A and C in 

probability space where P(C) = 1-  we have:  )(),(
)(

),(
)|( APCAP

CP

CAP
CAP . 

On the other hand 2)(
)(

)(

)(

),(
)|(  AP

CP

AP

CP

CAP
CAP  . Combined we have 

 2)()|()(  APCAPAP . Thus for every event A of probability significantly 

bigger than epsilon, P(A) and P(A | C) are essentially the same.  

Since P(B) 
2

log
1

n

n


 
this reasoning shows that when conditioning on B we may use the  

probabilities without referring to the condition, as it holds with probability close enough 

to 1 that ensures the computation of the expectation is accurate enough while assuming 

the condition.  

Call the part of the MIS Algorithm (Table 1 in the main text) corresponding to a specific 

phase i (0 ≤ i ≤ log D) and step j (0 ≤  j ≤ log n)  subphase (i,j). For a node u and a 

subphase (i,j), define two random variables )(

,

u

jiX and )(

,

u

jiY   as follows. 

If u is inactive already at the beginning of subphase (i,j), then )(

,

u

jiX =0. Otherwise, )(

,

u

jiX  is 

the number of messages sent by u to its active neighbors during the subphase. 

If u is active at the beginning of subphase (i,j) and becomes inactive by the end of the 

subphase, then 
)(

,

u

jiY =1. Otherwise, 
)(

,

u

jiY =0. 

 

We proceed to estimate the expectation of the above two random variables. Suppose u is 

still active in the beginning of subphase (i,j), and let d denote its degree at the beginning 

of this subphase (that is, the number of its active neighbors at the beginning of the 

subphase). The probability that in line 6 of the algorithm the marker v of u gets the value 

1 is 
iDlog2

1
. When u’s marker v gets the value of 1, u has to broadcast at most 2d 

messages to its active neighbors (d in line 6, and either d  or 0 in line 10). Otherwise, u 

does not send any messages. Thus, the expected value of )(

,

u

jiX  in this case is at most 

iD

d
log2

2
. (If u is inactive at the beginning of the subphase then the expectation of 

)(

,

u

jiX  is 

clearly zero.) 
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Turning to the expectation of 
)(

,

u

jiY  note, first, that here, too, if u is inactive at the 

beginning of the subphase then the expectation of 
)(

,

u

jiY  is zero. Assume, thus, that 

u is still active in the beginning of the subphase, and recall that we may assume that its 

degree d in the beginning of the subphase is at most 
i

D

2

2
. The probability that 

)(

,

u

jiY =1 is 

at least the probability that exactly one of the d active neighbors of u gets its marker v set 

to 1 in line 6, and none of the markers of its active neighbors is set to 1. By the arguments 

in the previous proofs, this probability is at least: 

4log2

1

loglog

1

2

1
)

2

1
1(

2

1

e

d

e
d

iD

d

iDiD 




   

 

We conclude that E( )(

,

u

jiX ) ≤ 2e
4
 E(

)(

,

u

jiY ). Summing over all values of i and j, using 

linearity of expectations we get 1 2e)( 2e)( 4

,

)(

,

4

,

)(

,  
ji

u

ji

ji

u

ji YEXE  since  1
,

)(

, 
ji

u

jiY , 

as u can become inactive only once during the whole algorithm. We thus conclude that 

the expectation of the total number of messages sent by u to active neighbors during the 

algorithm when B holds is at most 2e
4
.  

Combining the parts of the sum we have: 

E(#M) = P(B)*E(#M|B) + P(B)*E(#M|B) E(#M) ≤ 2e
4
n+10n 

proving our claim. 

 

Remark: If we charge for messages sent to inactive nodes as well, then the expected 

message complexity may well be quadratic in n as shown by the following example. Let 

G be the graph consisting of a matching on a set U of 0.9n nodes and a complete graph on 

a set W of 0.1n nodes, where each node of U is adjacent to each node of W. The 

maximum degree here is D=n, and with probability )1(   in the very first subphase  only 

one node of U joins the independent set, while his mate in the matching as well as all 

nodes of W become inactive. If this happens, then in the rest of the algorithm,  

whenever a node of U joins the independent set, it sends more than 0.2n messages, and as 

altogether 0.45n nodes of U must join  the independent set, the total number of messages 

sent in this case is )( 2n . Of course, most of these messages are being sent to the 

inactive nodes of W, and are thus not charged in our analysis above. Note also that since 

all messages are broadcast the proof also shows that the total number of broadcasts 

performed (in line 6) is O(n). This is the optimal value for a general MIS broadcast 

algorithm for arbitrary networks since in complete bipartite networks with vertex classes 

of equal size, for example, half the nodes must send at least one message. 

 

 

A note on maximal network degree 

The biological process that motivated our work has a bounded degree with each cell 

surrounded by a few (up to 6) other cells. For such networks the run time of our 

algorithm is O(log n), similar to the best known algorithms for MIS even though our 
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algorithm relies on fewer assumptions. Note that for bounded degree networks, a fixed 

probability distribution would also lead to an O(log n) run. However, this run time 

analysis is asymptotic. In the simulations we performed we observed that for the 

biological topology we used a rate change method leads to faster selections when 

compared to a fixed rate method. In addition, the rate change model seems to lead to 

better agreement with the experimental data when compared to the fixed rate model 

(Figure 3 in the main text). 
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Supporting movies for:  

A biological solution to a fundamental distributed computing problem 

Live imaging experiments 

Intact pupae of E(spl)mα-DsRed.T4-NLS ; FRT80B-GFP-NLS strain were collected at ~8-10 
hours after puparium formation. Then, pupae were submerged in halocarbon oil and were 
subjected to time-lapsed fluorescent microscopy in ~2 minutes intervals under a Zeiss LSM710 
system. Confocal images were z-stacked in 5 µm steps to make a vertical axis of ~50-100µm 
(resulting in between 10 and 20 images per time point).  

We followed SOP selection in the neuroectoderm layer from ~9-12 hours after puparium 
formation. This time window enables us to follow selection events within the fifth rows of the 
small bristle on the left and right sides of the future adult fly notum (allowing us to follow SOP 
selection in two distinct clusters per pupa).  

All the cells in the neuroectoderm layer were marked by a ubiquitous nuclear GFP expression, 
and Notch activity was detected by nuclear E(spl)mα-DsRed reporter expression. The trace for a 
SOP selection event is characterized by DsRed reporter accumulation in the selected SOP 
neighboring cells. Once it inhibits all surrounding cells a SOP can be detected as a green (GFP 
expressing) cell surrounded by red (DsRed expressing) cells. The selected SOP is usually not 
entirely enclosed by reporter expressing cells since Notch reporter is activated only within the 
pro-neural cluster which in the case of the fifth row has a narrow shape. 

Movies 

This movies provided in this DVD depict, in each frame, the maximal intensity pixel from the set 
of Z axis positions that were tracked for each time point (“maximal intensity projection”). Two 
movies are presented for each pupa (except for pupa #1): one with merged green and red 
channels and the second with only the red channel (the red channel movies contain “RFP” as a 
suffix). Movies are numbered as in Supplementary Table 1. Each movie provides a clock 
presenting the relative time of each frame (the experiment initiation time was set to zero for all 
movies) and a scale bar of 25µm. 

We have manually annotated two of the movies (Sample Movie 1 and Sample Movie 2 
corresponding to pupa #7 and #5, respectively). These movies provide annotations displaying the 
approximate region of the fifth row pro-neural clusters (surrounded by white rectangle in the first 
few frames of each of these movies), arrows referring to selected SOPs within the regions of 
interest, and an annotation for pupa head eversion initiation time.  

Data analysis and raw data files 



In many cases the information in the maximal intensity projection movies (as presented in this 
DVD) was not accurate enough to determine the selection times of all SOPs since the 
neuroectoderm layer is placed with an incline (on the anterior-posterior axes) with respect to the 
microscope focal plane, such that a stripe of the neuroectoderm layer with ~5 cells width is in 
focus at each z-section layer. In such cases the data of the neuroectoderm layer in the maximal 
intensity projection movies is interfered with irrelevant fluorescence signals coming from cells 
expressing GFP/DsRed reporter above and below the neuroectoderm layer, and from auto-
fluorescence of the pupa cuticle. Thus, the relative SOP selections times were manually 
determined from the raw (Z stack) data according to the time step in which the level of DsRed 
reporter in the first neighbor of the selected SOP reaches a threshold.  

  


